
NASA-CR-203325

FINAL REPORT

NASA Research Grant NAG3-1384

,./-?-fj,__-

,!=:,. • L..

Period of Performance

11/18/93-11/18/96

(includes 12 months no-cost extension 11/18/95-11/18/96)

STABILITY LIMITS AND DYNAMICS OF

NONAXISYMMETRIC LIQUID BRIDGES

PREPARED BY

J. IWAN D. ALEXANDER

Principal Investigator

Center for Microgravity and Materials Research

The University of Alabama in Huntsville,

Huntsville, AL 35899



NAG3-1384: Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges

Final Report

1.1 General

The research accomplishments summarized in this Final Report refers to work funded

under the grant NAG3-1384 Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges

during the period from 11/18/93 to 11/18/96, which included the 12 months no-cost extension

granted at the end of the nominal 3 year period of performance. The report has 5 sections, in

section 1 the objectives are presented, a task description is given and the background and

significance of the work is outlined. In section 2 the research accomplishments are summarized.

In section 3 publications and presentations are listed. Student participation is listed in 4 and

references for sections 1 and 2 are supplied in section 5.

Objectives:
• Theoretical and experimental investigation of the stability of nonaxisymmetric and

axisymmetric bridges contained between equal and unequal radii disks as a function of Bond

and Weber number with emphasis on the transition from unstable axisymmetric to stable

nonaxisymmetric shapes.

Numerical analysis of the stability of nonaxisymmetric bridges between unequal disks for

various orientations of the gravity vector

Experimental and numerical investigation of bridge stability (nonaxisymmetric and

axisymmetric), large amplitude (nonaxisymmetric) oscillations and breaking.

1.2 Task Description:

This project involves both experimental and theoretical work. Static and dynamic

experiments are conducted in a Plateau tank which makes a range of static Bond numbers

accessible. The theoretical investigation includes both analytical and numerical approaches.

1.3 Background and significance

A liquid bridge, or captive drop, is a mass of liquid held by surface tension between two or

more solid supports. Liquid bridges occur in a variety of physical and technological situations and

a great deal of theoretical and experimental work has been done to determine axisymmetric

equilibria for various disk configurations, bridge aspect ratios, axial gravity and rotations [ 1-18].

There have also been numerous investigations of the dynamics of axisymmetric liquid bridges

subject to different excitations (impulses, vibration, etc.) [19-21 ]. Such investigations have been

motivated both by practical considerations and basic scientific interest. Liquid bridges are important

features in the positioning of liquid masses using surface tension forces. In crystal growth, they

are associated with the floating-zone growth technique. Their oscillation and decay properties can

also be used for viscosity and surface tension measurements of molten materials at high

temperatures [22]. Pendular liquid bridges occur widely in the powder technology industry and are

a major influence on powder flows and their mechanical properties [23]. In porous media flow,

liquid-liquid displacement can lead to evolution of pendant and sessile lobes or lenticular bridges.

The formation of liquid bridges from the gel that coats lung micro-airways results in occlusion of

the bronchioles and is a precursor to respiratory problems and lung collapse [24].

Most theoretical and experimental work deals with liquid bridges that are anchored to the

sharp edges of circular support disks. Slobozhanin and Tyuptsov [25] showed that for a bridge

anchored to a sharp edge, the contact angle ¢ can vary freely within the range _be < _b _< _be + _ -- 5



where_)eis thewettingangleof the liquid in contact with the smooth solid surface, 5 is the acute

angle defined by the sharp edge. This pinning or anchoring of the contact line is sometimes

referred to as canthotaxis [26] and allows the bridge to take on a wider range of stable

configurations than would be admissible if the contact angle was restricted to be the equilibrium

angle (as it would be for a fiat or some other smooth surface). Bridges held between other types of

supports have also been considered, including two flat plates [7, 27-30] a plate and a sphere [31]

and two spheres [23, 32-34].

The shapes and stability of liquid bridges are governed by the following dimensionless
numbers

Bo

V

A

We

K

01,02

= ApR2g/_ " = Bond number

- Vo/_R2L = relative volume

= L/2R --- slenderness

= ApR3122/_ ' = Weber number

= RI/R2 = Ratio of supporting disk radii.

- lower and upper contact angles

Here Ap is the density difference between the liquid bridge and the surrounding liquid or

gas, R is the characteristic length associated with the bridge (usually the radius of the supporting

disk), g is the gravitational acceleration, ?' is the surface (or interfacial) tension, L is the distance

between the disks, VO is the actual liquid volume and 12 is the angular rotation rate of the disks.

Bo is a measure of the ratio of buoyancy to surface tension forces. The Weber number represents a

balance between centrifugal and surface tension forces.

Our research has contributed to the fundamental understanding of fluid surface equilibria

dynamics as well as providing a foundation for advances in related research areas (for example in

crystal growth related problems). Liquid bridges have been involved in a number of past

microgravity and our research results will be useful for the quantitative assessment of g-jitter

effects on such experiments.

2. Accomplishments

2.1 Summary

The research involved an experimental and theoretical investigation of the statics and

dynamics of nonaxisymmetric bridge configurations and nonaxisymmetric oscillations of initially

axisymmetric bridges. The effects of nonaxial acceleration on the minimum volume stability limit

have been investigated numerically. The minimum volume stability limit was found to be

substantially modified as the lateral component of acceleration is increased. It appeared to

approach, but not meet, the "zero Bond number" minimum volume limit for purely axial

acceleration. This analysis was extended to include an investigation of maximum volume limits and

was the subject of two journal publications (papers 3 and 4 listed in section 3.1)

We also investigated equilibrium stability problems for multiparametric axisymmetric

equilibrium states (papers 2 and 7, section 3.1). The stability of a bridge subject to the combined

effect of an axial gravity and isorotation was considered for restrictions typical for the floating zone

technique. The influence of unequal disk radii combined with axial gravity on the entire boundary

of stability with respect to arbitrary perturbations has also been analyzed. The work on isorotating

bridges has been completed and submitted for publication (paper 7, section 3.1). Experimental

and theoretical work continues on the unequal disk radii problem under the newly funded grant
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NAG3-1684 that startedin May of 1996. We also undertook theoreticaland experimental
investigationson thebehaviorof weightlessbridgeswhen its axisymmetricshapelosesstability
(paper6, section3.1).

Forcoaxialdisksupports,thestability of nonaxisymmetricbridgessubjectto axialgravity
hasalsobeeninvestigatedexperimentallyandthroughnumericalsimulation(preliminaryresultsare
discussedin paper3 section3.1). This is the first attemptto determinethe stability limit of
nonaxisymmetricbridgesfor rangesof relativevolumesandaspectratiosbeyond the maximum
volumelimit for axisymmetricbridgesthatweareawareof.

2.2 Experimental

2.2.1 Experimental Set-up

Figure 1 schematically depicts our Plateau chamber. Liquid bridges are formed between

rigid sharp-edged 1 cm diameter circular disks. The disks are mounted on supports that allow for

independent rotation and lateral and vertical translation. These motions are facilitated through two

3-axis precision motor/drive systems. This provides for vertical oscillation, rotation and small

amplitude lateral oscillation (the slip-ring gasket constrains the allowable lateral motion of the lower

disk). The upper disk is supported by an injection tube. The disks are made from stainless steel.

The bridge liquid is injected or removed through an injection tube which terminates in a 4mm-

diameter hole in the center of the upper disk. A calibrated microsyringe is used for the injection of a

fixed volume of liquid. The bridge is simultaneously lengthened by slowly moving the disks apart

to the required separation distance. This distance can be determined to within 1-2gm. A 3-way

purge valve is suitably positioned to trap air bubbles.

Each support can be independently vibrated at frequencies less than 10 Hz. We use two

imaging methods. Video images are obtained from two orthogonal cameras. A high quality

Fourier transform imaging system is used for edge detection.

GLASS
WALLS

\

11"_ I v2

\
ALUMINUM

BASE

Fig. 1 Plateau Chamber: (1) upper
vertical displacement motor VI;
(2) upper rotational motor; (3)
upper lateral displacement motor,
L 1; (4) bridge fluid injection line;
(5) upper spindle; (6) upper feed
disk; (7) lower feed disk; (8) slip-
ring gasket; (9) lower rotational
motor; (I 0) lower lateral

displacement motor, L2; (11)
lower vertical displacement motor
V2; (12) cooling coils; (13) bath
circulator (14) heating coil.

The disk diameters are known to within 10 gm. The length of the bridge is set by the

positioning device and can be determined with a precision of 1-2 gm. Thus, for bridges of 2.5 cm



lengththe slenderness(L/2R0), canbe determinedto within + 0.04%. Volume can be measured

with a precision of 0.5 mm 3 and an accuracy of 0.1%.

The liquid bath is a methanol-water solution. Variation of the methanol concentration

changes the density difference between the Dow Coming 200 ® silicone oil bridge and the bath.

We control the both the bath temperature and the methanol concentration to adjust Bo. At 22.5 ° C

and 83% water concentration a condition of neutral buoyancy is obtained. Temperature control is

crucial [26] since typical relative density changes with temperature are 2x10-5g cm-3K -1. Thus, to

achieve density matches to within 10 -4 g cm -3 requires temperature control to within +0.1 K. This

is achieved by control of the ambient temperature [26]. Two orthogonally positioned CCD

cameras are used for visualization. They are connected to a framegrabber and VCR for data

recording. One viewing axis uses incoherent white light and is used to obtain an overall image of

the bridge. The second axis uses coherent light from a He-Ne laser. The image of the bridge is

optically processed by placing a high pass filter at the Fourier transform plane. Thus, only the

edges of the bridge pass through the filter. A series of lenses are then used to magnify the bridge.

The lenses provide an angular resolution of 0.5 arcseconds which yields a resolution of 5gm in the

object plane. This allows accurate viewing of the bridge shape down to scales where "microscopic"

contact angle behavior can be observed.

2.2.2 Experiments

Experiments have been carried out in three areas.

a) Lateral shearing, squeezing and force measurements.

For a liquid bridge held between two flat coaxial equidimensional circular disks, we used a

force deflection apparatus to measure the total force exerted by a liquid bridge on the lower disk.

The lower disk is attached to the end of a long cantilever arm. The cantilever arm acts as a weak

spring. The liquid bridge displaces the disk by an amount proportional to the total force exerted on

the disk. Then, by directly measuring the displacement, we can determine the total force. After

calibrating the deflection of the cantilever arm with known applied loads, two sets of experiments

were performed. In the first set, the total force was measured for various aspect ratio right circular

cylindrical bridges. It is easy to calculate the forces exerted by right circular cylindrical bridges,

and to verify the measurement by comparison with theoretical predictions. The second set of

experiments involves measuring the force exerted by liquid bridges with a variety of aspect ratios

and volumes at different Bond numbers. The measurements have been compared to theoretical

predictions for various relative volumes and aspect ratios and agreement is good. It was shown that

a minimum in capillary pressure does not always result in a maximum upward force on the lower

disk. In addition, depending on the actual bridge volume, when the aspect ratio is increased the

bridge may break before a minimum in capillary pressure is experienced. This work has not yet

been submitted for publication but has been described in detail in previous annual reports.

b) Stability limits for symmetric and nonsymmetric bridges

This work has involved the determination of the stability limits for large volume (V >> 1)

nonaxisymmetric bridges subject to axial acceleration and was motivated by our theoretical

investigation (see the end of section 2.3.2). Experimental work involved the characterization of

stability limits of nonaxisymmetric bridges in an axial gravity field as determined numerically.

The maximum volume stability limit was also investigated for axisymmetric bridges. A stability

analysis (see paper 6 section 3.1) showed the existence of a bifurcation point at a critical

slenderness, A c, along the upper stability margin. Below A c, the transition from an axisymmetric

to a nonaxisymmetric configuration is continuous. However, above A c, the transition is
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discontinuous.Thiswasinvestigatedexperimentallyandtheresultsaredescribedin apublication
(paper6, section3.1).

(c) Vibration dynamics

We have undertaken an experiment to determine the spatial mode structure of initially fight

circular cylindrical liquid bridges subject to lateral sinusoidal oscillation. We have developed a

coherent imaging optical system that uses a Fourier transform of the image of a liquid bridge

silhouette. By blocking the zero frequency, or dc component of the optical scene, only the high-

frequency components corresponding to edges are passed through the system. This approach was

used for several reasons. The system is designed for the study of contact line and angle dynamics

and their relation to the larger scale dynamics of the liquid bridge surface. The advantages of this

approach are that: (1) Optical filtration allows us to more precisely measure this angle by accurately

locating the edge of the bridge. (2) By performing some of the image processing optically, we

eliminate the need for expensive and specialized image processing hardware. (3) For liquid

bridges undergoing sinusoidal deformations, the transform plane is a convenient location to obtain

vibrational mode information directly.

Previous studies have focused on determining the resonant frequencies. We examined the

nonlinear behavior of the forced oscillation of liquid bridges that act as nonlinear weak springs. At

the limit of small vibration amplitudes, the response of the liquid bridge to vibration is typically

Lorentzian, centered about the resonance frequency. However, at higher vibration amplitudes,

nonlinear characteristics of the liquid bridge appear to become important. This work is still in

progress.

2.3 Theoretical

2.3.1 Dynamics: Oscillation, vibration and breaking

A joint study carried out at the CMMR and our colleagues at the Laboratorio Aerodinfimica

E.T.S.I. Aeronziuticos (LAMF) at the Universidad Polit_cnica de Madrid focused on the effect of

vibration on the stability limits of bridges and the modification of the static stability boundaries (see

paper 1 section 3.1). The analysis was based on a self-similar one-dimensional model in which

the axial velocity is assumed to be dependent on the axial coordinate z and the time t, but not on the

radial coordinate r. Within the validity range of this analysis, the time variation of the interface

deformation satisfies Duffing's equation. The results indicated that, depending on the type of axial

vibration, stabilization or destabilization relative to the static stability margin can occur.

We have also developed a numerical method for the description of three dimensional

oscillations of liquid bridges. It is a modified volume of fluid/continuum surface force (VOF/CSF)

method. The method is suitable for liquid fragmentation and coalescence problems for arbitrary

shaped fluid surfaces and is well suited for situations that involve a second surrounding fluid

(liquid or vapor). We have applied it to axisymmetric and nonaxisymmetric breaking problems

including the problem of nonaxisymmetric vibration. Preliminary results are discussed in a

publication (paper 4 of section 3.1) and a manuscript describing the method is in preparation.

2.3.2 Stability of nonaxisymmetric liquid bridges

In this work we examined large nonaxisymmetric deformations of liquid bridges (with

volume V0, held between equidimensional coaxial disks of radius R and separated by a distance

L. First, we consider a numerical analysis (using Surface Evolver) of the stability limits of liquid

bridges subject to lateral accelerations as a function of slenderness (A =L/2R), relative volume

(V= VO/rcR2L), and Bond number (Bo = ApgR2/]/). For axisynunetric bridges subject to axial
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gravity, thesestability limits correspondto a situationwhenthe axisymmetricbridgebreaks,or
when the axisymmetricbridge loses stability to a stablenonaxisymmetricshape.The lateral
accelerationstability limit is defined in terms of loss of stability by breaking.This limit is
determinedfor both large and small valuesof the relativevolume. The stability limit can be
dividedinto two basicsegments.Onesegmentappearsto be indistinguishablefrom partof the
margin for the zero-Bondnumbercase.The other segmentbelongsto a one-parameter(Bo)
familyof curveswhich, for agivenBo and a fixed value of A , have a maximum and minimum

stable relative volume. Each of these curves is asymptotic to another part of the minimum volume

zero-Bond number limit up to a point determined by the particular value of Bo and has a turning

point corresponding to a maximum value of A. For V >>1, the maximum stable volume tends to

infinity as A-_0. For any given lateral Bond number, the minimum volume stability limit is

decreased and becomes indistinguishable from the zero Bond number limit when A becomes

sufficiently small. For unstable bridges in the vicinity of the stability limit a consistent sequence

of shapes can be readily identified and are recognizable by their overall shape and the number of

necks they possess.

In a recent bifurcation analysis for V = 1 bridges subject to lateral gravity (Laveron et al.

1995) it was speculated that, because the eigenfunction associated with a subcritical bifurcations
for A > Ac is antisymmetric with respect to the z = 0 plane, the bridge would break into two

drops of unequal volumes. Likewise it was speculated that, for A < Ac, loss of stability would

lead to equal size drops since destabilization occurs through a turning point and the associated

eigenfunction is symmetric. Our results confirm this, although we note that, when breaking

occurs, three drops form, two which remain attached to the disks and a third, free satellite drop.

Our results for other values of V are discussed in terms of the V- 1 case.

The stability of axisymmetric liquid bridges subject to axial gravity has been discussed in

[17] and it is well-known that axisymmetric bridges are unstable to nonaxisymmetric perturbations

which can lead to stable nonaxisymmetric bridges. However, little is known about the stability of

these nonaxisymmetric configurations. We examined the stability of these bridges is numerically

(using Surface Evolver ) for Bo - 0.1 and 2, and experimentally. We find that the maximum

volume segment of the stability limit appears to follow the same trend as for lateral gravity. We

conjecture that, as for lateral gravity, the maximum stable relative volume, V tends to infinity as the

slenderness, A, tends to zero. Our results are described in two publications (papers 3 and 4 of

section 3.1).

2.3.3 Bifurcation of the equilibrium states of a weightless liquid bridge

The bifurcation of the solutions of the nonlinear equilibrium problem of a weightless

liquid bridge with a free surface pinned to the edges of two coaxial equidimensional circular

disks was examined. The bifurcation is studied in the neighborhood of the stability boundary for

axisymmetric equilibrium states. The first approximations for the shapes of the bifurcated

equilibrium free surfaces were obtained. These surfaces exhibit a variety of shapes that depend

on the nature of the perturbation that leads to loss of stability of the axisymmetric states. From

the structure of the bifurcation the stability of the bifurcated equilibrium shapes was determined.

Loss of stability with respect to axisymmetric perturbations always leads to breaking of the

bridge. Along the maximum volume stability limit, depending on values of the system

parameters, loss of stability with respect to nonaxisymmetric perturbations results in either a

jump or a continuous transition to stable nonaxisymmetric shapes. The value of the slenderness
at which a change in the type of transition occurs is found to be As - 0.4946. Experimental



investigationbasedonaneutralbuoyancytechniqueagreeswith thisprediction.It showsthatfor
A < As, the jump is finite and that a critical bridge undergoes a finite deformation to a stable

nonaxisymmetric state. Results are described in a publication (paper 2 section 3.1.)

2.3.4 Stability of an isorotating liquid bridge in an axial gravity field

The stability problem for the axisymmetric equilibrium states of an isorotating liquid

bridge between equidimensional circular disks in a constant axial gravity field was considered.

In particular, we examined the stability of bridges satisfying two types of constraint that are

typical for the floating zone method used for materials purification and single crystal growth.

First we consider the constraint that the relative volume of the bridge, V, is equal to 1. For this

case, the critical values of the slenderness (A) and of the liquid contact angles at both disks have

been determined for a wide range of the Bond (B) and Weber (W) numbers. The second

constraint is that the liquid contact angle at one of the disks is prescribed (the chosen values are 0 °

and 15° and correspond to extremes in the range of growing angle values). For this case, the

dependencies of critical A and V values on B and W have been calculated. In addition, both axial

gravity directions are considered separately and for critical states, the values of the contact angle

at the other disk are also analyzed. (Results are described in paper 2 of section 3.1.)

3. Publications and presentations

3.1 Publications

1. J. Meseguer, M.A. Gonz_ilez and J.I.D. Alexander, "Dynamic stability of long

axisymmetric liquid bridges", Microgravity Science and Technology, 7,234-242. 1994.

2. L. Slobozhanin, J.I.D. Alexander and A. Resnick, "Stability of liquid bridges under

reduced gravity", to appear, Proceedings of the 2nd Symposium on Fluids in Space,

Naples, Italy, April 22-26, 1996.

3. J.I.D. Alexander, "Stability of nonaxisymmetric liquid bridges" (to appear) Microgravity

Science and Technology, (1997)

4. J.I.D. Alexander, Y. Zhang, S. Delafontaine and A. Fedoseyev, "Numerical Simulation of

Liquid Bridge Dynamics and Statics", to appear in Izv. Akad. Nauk Mekh. Zhid. Gaza

(Fluid Dynamics), 1997.

5. A. Resnick and J.I.D. Alexander, "A Plateau Tank Apparatus for the Study of Liquid

Bridges", to appear Review Scientific Instruments 68 (1997).

6. L. Slobozhanin, J.I.D. Alexander and A. Resnick, "Bifurcation of the equilibrium states of

a weightless liquid bridge", (in review) Physics of Fluids, 1996.

7. L. Slobozhanin, J.I.D. Alexander, "Stability of an isorotating liquid bridge in an axial

gravity field", (in review) Physics of Fluids, 1996.

8. D. Lyubimov, T. Lyubimov, J.I.D. Alexander and N.I. Lobov, "On the Boussinesq

approximation for fluid systems with deformable boundaries", submitted to Journal of

Fluid Mechanics, 1996.

9. A. Resnick and J.I.D. Alexander, "A Coherent Fourier Imaging System for Liquid

Bridge Experiments" (manuscript in preparation).



3.2 Presentations

A. Resnick, L. Slobozhanin and J.I.D. Alexander, "Influence of support geometry and gravity on

the stability of liquid bridges Division of Fluid Mechanics, American Physical Society,

Syracuse, New York, November 1996.

J.I.D. Alexander, "Large deformations of liquid bridges", Invited presentation at The Second

Symposium on Fluids in Space, Naples, Italy, April 22-26, 1996.

L. Slobozhanin, J.I.D. Alexander and A. Resnick, "Stability of Liquid bridges under reduced

gravity", to appear, Proceedings of the 2nd Symposium on Fluids in Space, Naples, Italy,

April 22-26, 1996

J.I.D. Alexander, "Scaling and estimation of experiment response to g-jitter," presented at ESA

Physical science working group meeting, ESA HQ, Paris France, September 1994.

J.I.D. Alexander, "Stability of nonaxisymmetric liquid bridges", European Low Gravity Research

Association Biannual Meeting (ELGRA), Madrid, Spain, December 11-14, 1994.

4. Students supported under this grant

Two students were supported under this grant: Andrew Resnick (Ph.D, Physics, UAH).

and Sylvie Delafontaine (Visiting MS student, Mediterranean Institute of Technology, Marseille,

France). Mr. Resnick is expected to graduate in June, 1997.
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investigationbasedon a neutral buoyancy technique agrees with this prediction. It shows that for

A < As, the jump is finite and that a critical bridge undergoes a finite deformation to a stable

nonaxisymmetric state. Results are described in a publication (paper 2 section 3.1.)

2.3.4 Stability of an isorotating liquid bridge in an axial gravity field

The stability problem for the axisymmetric equilibrium states of an isorotating liquid

bridge between equidimensional circular disks in a constant axial gravity field was considered.

In particular, we examined the stability of bridges satisfying two types of constraint that are

typical for the floating zone method used for materials purification and single crystal growth.

First we consider the constraint that the relative volume of the bridge, V, is equal to 1. For this

case, the critical values of the slenderness (A) and of the liquid contact angles at both disks have

been determined for a wide range of the Bond (B) and Weber (W) numbers. The second

constraint is that the liquid contact angle at one of the disks is prescribed (the chosen values are 0 °

and 15° and correspond to extremes in the range of growing angle values). For this case, the

dependencies of critical A and V values on B and W have been calculated. In addition, both axial

gravity directions are considered separately and for critical states, the values of the contact angle

at the other disk are also analyzed. (Results are described in paper 2 of section 3.1.)
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Dynamic Stability ot'] ong, Axisymmetric
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This paper deals with the non-linear forced oscillations of
axisymmetric long liquid bridges between equal disks. The
dynamics of the liquid bridge has been analyzed by using a
self-similar, one-dimensional model already used in similar
problems. The influence of the dynamics on the static stability
limits, as well as the main characteristics of the non-linear
behaviour of long liquid bridges, have been studied within the
range of validity of the mathematical model used here•

1 Introduction

In the last years isothermal liquid bridges have focused the
attention of many investigators, with a large number of
published papers on this topic (a review of the literature
related to liquid bridges can be found in Sanz-Andres [1]).
Because of the large number of parameters involved, the
study of liquid bridges becomes a formidable task which
extends in time from the early paper of Gillette and Dyson
[2] to the late paper of Slobozhanin and Perales [3]. Most of
these papers are only concerned with static stability limits.
As far as we know only a few attempts have been made to
analyze the influence of the dynamics of the liquid bridge,
and these efforts have been centred more in the dynamics
itself than in its influence on the stability limits (Meseguer
[4], Rivas and Meseguer [5], Perales and Meseguer [6], Sanz
and L6pez-D&z [7], Zhang and Alexander [8], Langbein [9],
Schulkes [I0], among others).

In this paper the influence of the dynamics on the
stability limits of liquid bridges is analyzed by using a
simplified one-dimensional, self-similar model which, in

spite of its simplicity, allows us to get some feeling on the
dynamical behaviour of long liquid bridges. Associated
with stability limits is the concept of stability margin, which
has been defined as the difference between the energy of the
stable equilibrium shape and of the unstable one tbr a given
liquid bridge. The stability margin gives an estimate of the
minimum energy which is needed to break a liquid bridge

Mail address: Prof. J. Meseguer. M. A. GonzAlez. Lamf. E.T.S.I.
AeronAuticos. Universidad Polit_cnica de Madrid. E-28040
Madrid. Spain; Dr. J. I. D. Alexander. Center for Microgravity
and Materials Research (CMMR), The University of Alabama in
Huntsville, Huntsville. AL 35899. USA.
Paper submitted: May 25. 1993.
Submission of final revised version: December 2. 1993.
Paper accepted: January 7, 1994.

through a given perturbation. Stability margins are dis-
cussed in sect. 2, whereas in sect. 3 the forced oscillations of

long liquid bridges are analyzed, and stability diagrams for
such kinds of perturbation are obtained.

2 Problem Formulation

The fluid configuration under consideration consists of an
axisymmetric liquid bridge, with constant density o, kine-
matic viscosity v and surface tension a, held by capillary
forces between two coaxial, solid disks of radius R which

are a distance L apart, as sketched in fig. 1. The volume of
liquid, V', is assumed to be almost the volume of a cylinder
of the same R and L, V' _. nR2L, and it is also assumed that

there is a small gravity field acting parallel to the liquid
bridge axis. To describe the behaviour of such a fluid
configuration the following dimensionless parameters
are introduced: slenderness A =L/(2R), dimensionless

volume V = V'[R _, Bond number B = o.gR2[a, and viscos-
ity parameter C=v(o./(aR))WL In addition to these
parameters, it must be stated that all physical magnitudes
used in the following have been made dimensionless by
using R and (QR3/a)w2 as characteristic length and charac-

teristic ttme, respectively.

LI2

L/2

L

Z

F

L ¸ " i/," • "

Fig. I. Geometry and coor-

dinate system for the liquid

bridge problem

t
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Abstract

The results of two lines of investigation of the equilibrium stability problems for a capillary liquid

bridge between two coaxial circular disks are presented. The first deals with the determination of

the stability regions for multiparametric axisymmetric equilibrium states. The stability of a bridge

subject to combine effect of an axial gravity and isorotation is considered when restrictions typical

for the floating zone technique are accounted for. The influence of unequal disk radii combined

with an axial gravity on the entire boundary of stability with respect to arbitrary perturbations is

also analyzed. The second line concerns the theoretical and experimental investigations on the

behavior of the weightless bridge when its axisymmetric shape loses stability.
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Stability of nonaxisymmetrie liquid bridges
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Abstract

The stability of nonaxisymmetric liquid bridges held between equidimensional coaxial disks of

radius R and separated by a distance L is examined. The stability limits for lateral and axial

acceleration are considered. The lateral acceleration stability limit is defined in terms of loss of

stability by breaking. This limit is determined for both large and small values of the relative

volume, V. The stability limit can be divided into two basic segments. One segment appears to be

indistinguishable from part of the margin for the zero-Bond number case. The other segment

belongs to a one-parameter family of curves which, for a given Bond number and a fixed value of

slenderness A = L/2R , have a maximum and minimum stable relative volume. The maximum

volume stability limit tends to infinity as A---_0. For any given lateral Bond number, the minimum

volume stability limit is decreased and becomes indistinguishable from the zero Bond number limit

when A becomes sufficiently small.

* This paper is dedicated to Professor Dieter Langbein on the occasion of his retirement in recognition of his
fundamental contributions to the understanding of liquid bridges and other phenomena associated with liquid surfaces.
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Numerical Simulation of Liquid Bridge Dynamics and Statics
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Abstract

The choice of numerical method for the simulation of liquid bridge dynamics and statics will

depend on the geometry of the bridge (slenderness, volume, support geometry, surface shape) as

well as the particular nature of the dynamical or static states under consideration. We examine a

number of techniques ranging from finite-difference methods which treat surface boundary

conditions directly, to Volume-of Fluid methods and an energy minimization method suitable for

computation of static equilibrium liquid bridge shapes for liquid bridges held between coaxial

equidimensional disks. Methods which do not involve mapping transformations only work well

when the surface of the bridge does not become a multivalued function of the coordinate system in

which the bridge is described. This generally restricts their application to bridges with volumes of

less than twice the volume the right circular cylinder that would fit between the two support disks.

In general, we found that the Surface EvoIver method which involves a global energy minimization

worked well over a large range of volumes and that breaking and oscillation dynamics of large

volume bridges was simulated well using a modified Volume-of-Fluid method.
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Abstract:

An apparatus has been constructed and used to study the equilibrium and dynamical

behavior of liquid bridges under reduced effective gravity. Liquid bridges are created and

manipulated using 6 independent computer controlled stepper motors which drive linear motion

tables. The bridges are visualized with a high magnification coherent Fourier optical system and in

an orthogonal view using incoherent white light. By calibrating a density hydrometer and

measuring the interfacial energy between the bridge and bath, reliable Bond numbers as low as 10-

4 can be created and held stable for extended periods of time. Dimensional control of the liquid

bridges approaches one part in 10 .4 for the aspect ratio and volume. The apparatus has been tested

by measuring the static stability limits of axisymmetric bridges and comparing the results with

previous theoretical predictions. Experimental error for the apparatus is 5Bo/Bo = 0.02 , 5A/A =

0.001 and 5V/V = 0.001, where Bo is the Bond number, A is the aspect ratio of the bridge and V

is the dimensionless (relative) volume of the bridge.
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BIFURCATION OF THE EQUILIBRIUM STATES OF

A WEIGHTLESS LIQUID BRIDGEt
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The bifurcation of the solutions of the nonlinear equilibrium problem of a weightless

liquid bridge with a free surface pinned to the edges of two coaxial equidimensional circular

disks is examined. The bifurcation is studied in the neighborhood of the stability boundary for

axisymmetric equilibrium states with emphasis on the boundary segment corresponding to

nonaxisymmetric critical perturbations. The first approximations for the shapes of the bifurcated

equilibrium surfaces are obtained. The stability of the bifurcated states is then determined from

the bifurcation structure. Along the maximum volume stability limit, depending on values of the

system parameters, loss of stability with respect to nonaxisymmetric perturbations results in

either a jump or a continuous transition to stable nonaxisymmetric shapes. The value of the

slenderness at which a change in the type of transition occurs is found to be As = 0.4946.

Experimental investigation based on a neutral buoyancy technique agrees with this prediction. It

shows that, for A < As, the jump is finite and that a critical bridge undergoes a finite deformation

to a stable nonaxisymmetric state.

t Dedicated to the memory of Dr. A.D. Tyuptsov.
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The stability problem for the axisymmetric equilibrium states of an isorotating liquid bridge

between equidimensional circular disks in a constant axial gravity field is considered. In particular,

we examine the stability of bridges satisfying two types of constraint that are typical for the floating

zone method used for materials purification and single crystal growth. First we consider the

constraint that the relative volume of the bridge, V, is equal to 1. Here, V is the ratio of the actual

bridge volume to that of a cylinder pinned to the edges of disks. For this case, the critical values of

the slenderness (A) (ratio of the disk separation to the diameter) and of the liquid contact angles

(/31, 132) at both disks have been determined for a wide range of the Bond (B) and Weber (W)

numbers. The second constraint is that the liquid contact angle/31 at one of the disks is prescribed

(the chosen values are 0 ° and 15° and correspond to extremes in the range of growing angle

values). For this case, the dependencies of critical A and V values on B and W have been

calculated. In addition, both axial gravity directions are considered separately and the values of the

contact angle at the other disk,/32, for critical states are also analyzed.

The solution of the stability problem for any liquid bridge is discussed in detail using the

case for B = W = 0.1 as an example. In particular, the relationship between the general boundary

of the stability region and the stability of bridges subject to the constraints outlined above is

examined.
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ABSTRACT

In this paper we reconsider the limits in which the Boussinesq approximation is valid

for fluid systems with deformable interfaces and develop a generalization of the approxima-

tion which allows for self-consistent application to such systems. The Boussinesq limit is

characterized by two parameters, G and e, where G is a dimensionless measure of gravita-

tional acceleration or system size and e is the product of the fluid's coefficient of thermal

expansion with a characteristic temperature difference. In general, the Bousinesq limit cor-

responds to G ---+ cc and e --+ 0 while the product Ge (equal to the familiar Grashof or

Rayleigh numbers, depending on the chosen scale factors) remains finite. We consider three

problems involving deformable boundaries: the stability of a two-layer fluid system heated

from above and below; the equilibrium of an encapsulated liquid drop in vertical temperature

gradient; and the influence of buoyancy on long-wavelength Marangoni instability. In the

first two problems, we examine the conditions required to consistently account for the effects

of a deformable surface on thermal convection while simultaneously applying the Bousinesq

approximation. In particular, the effects of the deformable surface can be included through

a term proportional to G_q', where c_ is the dimensionless density difference across the sur-

face and _,"is the deflection of the interface from planarity. However, for consistency, it is

then required the density of the two fluids be treated as equal in the equations of motion


